每天拿出一分钟来学习,你的生命会更加精彩。

tf-idf算法(文字识别)

发布:洪雨2020-3-15 18:59分类: 洪雨seo 标签: 洪雨seo

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了TF-IDF以外,因特网上的搜索引擎还会使用基于链接分析的评级方法,以确定文件在搜寻结果中出现的顺序。


原理编辑
TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TFIDF实际上是:TF* IDF,TF词频(Term Frequency),IDF逆向文件频率(Inverse DocumentFrequency)。TF表示词条在文档d中出现的频率。IDF的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其它类包含t的文档总数为k,显然所有包含t的文档数n=m+k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其它类文档。这就是IDF的不足之处.在一份给定的文件里,词频(term frequency,TF)指的是某一个给定的词语在该文件中出现的频率。这个数字是对词数(termcount)的归一化,以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词数,而不管该词语重要与否。)对于在某一特定文件里的词语来说,它的重要性可表示为:

以上式子中分子是该词在文件中的出现次数,而分母则是在文件中所有字词的出现次数之和。
逆向文件频率(inverse documentfrequency,IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到:

其中
|D|:语料库中的文件总数
:包含词语的文件数目(即的文件数目)如果该词语不在语料库中,就会导致分母为零,因此一般情况下使用
作为分母。
idf公式分母
idf公式分母
然后再计算TF与IDF的乘积。

某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。[2] 
举例编辑
例1
有很多不同的数学公式可以用来计算TF-IDF。这边的例子以上述的数学公式来计算。词频 (TF)是一词语出现的次数除以该文件的总词语数。假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是3/100=0.03。一个计算文件频率(IDF)的方法是测定有多少份文件出现过“母牛”一词,然后除以文件集里包含的文件总数。所以,如果“母牛”一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是log(10,000,000 / 1,000)=4。最后的TF-IDF的分数为0.03 * 4=0.12。
例2
在某个一共有一千词的网页中“原子能”、“的”和“应用”分别出现了 2 次、35 次 和 5 次,那么它们的词频就分别是0.002、0.035 和 0.005。 我们将这三个数相加,其和 0.042 就是相应网页和查询“原子能的应用”相关性的一个简单的度量。概括地讲,如果一个查询包含关键词 w1,w2,...,wN, 它们在一篇特定网页中的词频分别是: TF1,TF2, ..., TFN。 (TF: term frequency)。 那么,这个查询和该网页的相关性就是:TF1 + TF2 +... + TFN。
读者可能已经发现了又一个漏洞。在上面的例子中,词“的”占了总词频的 80%以上,而它对确定网页的主题几乎没有用。我们称这种词叫“应删除词”(Stopwords),也就是说在度量相关性是不应考虑它们的频率。在汉语中,应删除词还有“是”、“和”、“中”、“地”、“得”等等几十个。忽略这些应删除词后,上述网页的相似度就变成了0.007,其中“原子能”贡献了0.002,“应用”贡献了0.005。细心的读者可能还会发现另一个小的漏洞。在汉语中,“应用”是个很通用的词,而“原子能”是个很专业的词,后者在相关性排名中比前者重要。因此我们需要给汉语中的每一个词给一个权重,这个权重的设定必须满足下面两个条件:
1.一个词预测主题能力越强,权重就越大,反之,权重就越小。我们在网页中看到“原子能”这个词,或多或少地能了解网页的主题。我们看到“应用”一次,对主题基本上还是一无所知。因此,“原子能“的权重就应该比应用大。
2. 应删除词的权重应该是零。
我们很容易发现,如果一个关键词只在很少的网页中出现,我们通过它就容易锁定搜索目标,它的权重也就应该大。反之如果一个词在大量网页中出现,我们看到它仍然不是很清楚要找什么内容,因此它应该小。概括地讲,假定一个关键词w 在 Dw 个网页中出现过,那么 Dw 越大,w的权重越小,反之亦然。在信息检索中,使用最多的权重是“逆文本频率指数”(Inverse document frequency缩写为IDF),它的公式为log(D/Dw)其中D是全部网页数。比如,我们假定中文网页数是D=10亿,应删除词“的”在所有的网页中都出现,即Dw=10亿,那么它的IDF=log(10亿/10亿)=log (1) = 0。假如专用词“原子能”在两百万个网页中出现,即Dw=200万,则它的权重IDF=log(500)=2.7。又假定通用词“应用”,出现在五亿个网页中,它的权重IDF = log(2)则只有0.3。也就是说,在网页中找到一个“原子能”的匹配相当于找到九个“应用”的匹配。利用IDF,上述相关性计算的公式就由词频的简单求和变成了加权求和,即 TF1*IDF1 + TF2*IDF2 +... +TFN*IDFN。在上面的例子中,该网页和“原子能的应用”的相关性为 0.0069,其中“原子能”贡献了0.0054,而“应用”只贡献了0.0015。这个比例和我们的直觉比较一致了。[3] 
应用编辑
权重计算方法经常会和余弦相似度(cosinesimilarity)一同使用于向量空间模型中,用以判断两份文件之间的相似性。
理论假设编辑
TFIDF算法是建立在这样一个假设之上的:对区别文档最有意义的词语应该是那些在文档中出现频率高,而在整个文档集合的其他文档中出现频率少的词语,所以如果特征空间坐标系取TF词频作为测度,就可以体现同类文本的特点。另外考虑到单词区别不同类别的能力,TFIDF法认为一个单词出现的文本频数越小,它区别不同类别文本的能力就越大。因此引入了逆文本频度IDF的概念,以TF和IDF的乘积作为特征空间坐标系的取值测度,并用它完成对权值TF的调整,调整权值的目的在于突出重要单词,抑制次要单词。但是在本质上IDF是一种试图抑制噪音的加权,并且单纯地认为文本频数小的单词就越重要,文本频数大的单词就越无用,显然这并不是完全正确的。IDF的简单结构并不能有效地反映单词的重要程度和特征词的分布情况,使其无法很好地完成对权值调整的功能,所以TFIDF法的精度并不是很高。
此外,在TFIDF算法中并没有体现出单词的位置信息,对于Web文档而言,权重的计算方法应该体现出HTML的结构特征。特征词在不同的标记符中对文章内容的反映程度不同,其权重的计算方法也应不同。因此应该对于处于网页不同位置的特征词分别赋予不同的系数,然后乘以特征词的词频,以提高文本表示的效果。
模型概率编辑
信息检索概述
信息检索是当前应用十分广泛的一种技术,论文检索、搜索引擎都属于信息检索的范畴。通常,人们把信息检索问题抽象为:在文档集合D上,对于由关键词w[1]… w[k]组成的查询串q,返回一个按查询q和文档d匹配度 relevance (q,d)排序的相关文档列表D’。[4] 
对于这一基问题,先后出现了布尔模型、向量模型等各种经典的信息检索模型,它们从不同的角度提出了自己的一套解决方案。布尔模型以集合的布尔运算为基础,查询效率高,但模型过于简单,无法有效地对不同文档进行排序,查询效果不佳。向量模型把文档和查询串都视为词所构成的多维向量,而文档与查询的相关性即对应于向量间的夹角。不过,由于通常词的数量巨大,向量维度非常高,而大量的维度都是0,计算向量夹角的效果并不好。另外,庞大的计算量也使得向量模型几乎不具有在互联网搜索引擎这样海量数据集上实施的可行性。[4] 
tf-idf 模型
当前,真正在搜索引擎等实际应用中广泛使用的是 tf-idf 模型。tf-idf模型的主要思想是:如果词w在一篇文档d中出现的频率高,并且在其他文档中很少出现,则认为词w具有很好的区分能力,适合用来把文章d和其他文章区分开来。[4] 
信息检索的概率视角
直观上看,tf 描述的是文档中词出现的频率;而 idf 是和词出现文档数相关的权重。我们比较容易定性地理解 tf-idf的基本思想,但具体到 tf-idf 的一些细节却并不是那么容易说清楚为什么。[4] 
总结

TF-IDF 模型是搜索引擎等实际应用中被广泛使用的信息检索模型,但对于 TF-IDF模型一直存在各种疑问。本文为信息检索问题一种基于条件概率的盒子小球模型,其核心思想是把“查询串q和文档d的匹配度问题”转化为“查询串q来自于文档d的条件概率问题”。它从概率的视角为信息检索问题定义了比TF-IDF 模型所表达的匹配度更为清晰的目标。此模型可将 TF-IDF模型纳入其中,一方面解释其合理性,另一方面也发现了其不完善之处。另外,此模型还可以解释 PageRank 的意义,以及PageRank 权重和 TF-IDF 权重之间为什么是乘积关系。


洪雨都看不懂,也懒得看,分享出来给别人看,真有点于心不忍啊。

温馨提示如有转载或引用以上内容之必要,敬请将本文链接作为出处标注,谢谢合作!

已有 0/2259 人参与

发表评论:

欢迎使用手机扫描访问本站,还可以关注微信哦~